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We investigate how collective modes and colored noise conspire to produce a beam halo with much
larger amplitude than could be generated by either phenomenon separately. The collective modes
are lowest-order radial eigenmodes calculated self-consistently for a configuration corresponding to
a direct-current, cylindrically symmetric, warm-fluid Kapchinskij-Vladimirskij equilibrium. The
colored noise arises from unavoidable machine errors and influences the internal space-charge force.
Its presence quickly launches statistically rare particles to ever-growing amplitudes by continually
kicking them back into phase with the collective-mode oscillations. The halo amplitude is essentially
the same for purely radial orbits as for orbits that are initially purely azimuthal; orbital angular
momentum has no statistically significant impact. Factors that do have an impact include the
amplitudes of the collective modes and the strength and autocorrelation time of the colored noise.
The underlying dynamics ensues because the noise breaks the Kolmogorov-Arnol’d-Moser tori that
otherwise would confine the beam. These tori are fragile; even very weak noise will eventually break
them, though the time scale for their disintegration depends on the noise strength. Both collective
modes and noise are therefore centrally important to the dynamics of halo formation in real beams.

PACS numbers: 45.10.-b, 52.25.Fi, 29.27.-a

I. INTRODUCTION

We recently demonstrated [1] that the combination of
colored noise and global oscillations in intense charged-
particle beams can create much larger halo amplitudes
than would arise in the absence of noise. This was done
using generic ‘particle-core’ models as representations
of time-dependent potentials associated with nonequilib-
rium beams [2, 3]; the ‘core’ established a time depen-
dence in the form of a harmonic oscillation reminiscent of
the presence of a global collective mode, and test particles
orbited in response to that potential. Ever-growing halos
were found to form despite the fact that large-amplitude
orbits spend considerable time under the influence of the
external focusing forces, and the frequencies associated
with these forces differ from those associated with the
core oscillation, a circumstance that impedes resonance.
Thus, the noise has a key influence, boosting statistically
rare particles to ever-growing amplitudes by continually
kicking them back into phase with the core oscillation.
The importance of this finding lies in the accelerator’s
extreme sensitivity to beam loss. For example, in a light-
ion accelerator, beam impingement of just ∼1 W/m at
energies exceeding ∼20 MeV will cause enough radioac-
tivation to preclude hands-on machine maintenance [4].
In high-average-current machines, this amounts to just a
few particles lost per meter, and large halos are thereby
of practical concern, even if their outermost fringe is ex-
tremely tenuous.

Our previous analysis was restricted to radial orbits
and centered on choosing the same initial conditions for
all of the orbits. Specifically, each orbit was assigned zero
initial velocity and the same initial radius. Because in a
real beam each individual particle has its own distinct ini-
tial conditions (for example, the particles would start at
different angular coordinates), each experiences its own

manifestation of colored noise. In other words, the noise
was regarded to be spatially uncorrelated. Thus, we se-
quentially computed 10,000 orbits while assigning to each
orbit its own unique, random manifestation of the col-
ored noise, and we cataloged the maximum amplitudes
of these orbits. Though this approach proved sufficient
to demonstrate the noise-enhanced production of beam
halo, it suffers a number of shortcomings. First, it lacks
self-consistency; with one exception, the oscillation fre-
quencies of the core were chosen ad hoc, the exception
relating to a space-charge-limited core. Second, because
only a single starting radius is sampled, it lacks the statis-
tics of a full treatment; halo particles originating from,
e.g., different radii are excluded. Third, the contribution
of nonradial orbits is likewise ignored.

The present paper offers a study that, by largely cir-
cumventing these shortcomings, is more thorough and
systematic. Herein we consider self-consistent collective
oscillations in the context of a general framework. Specif-
ically, we consider a direct-current, cylindrically sym-
metric beam and model it as a warm-fluid Kapchinskij-
Vladimirskij (KV) equilibrium configuration. We then
imagine the beam to be excited such that it possesses
a self-consistent spectrum of collective, stable radial
modes of oscillation as previously calculated by Lund
and Davidson [5]. The associated time-dependent space-
charge force combines with the external focusing force to
determine the equation of motion of test particles. By
populating the full configuration space with very many
(typically 106) test particles, assigning each test particle
its own random manifestation of colored noise, and then
tracking their orbits, we compute the evolution of the
halo. We do this for two extremes of initial particle veloc-
ities, the first corresponding once again to purely radial
orbits, and the second corresponding to purely circular
orbits. The halo structure depends, of course, on (a) the
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beam parameters, which we combine into a single quan-
tity, the space-charge tune depression, (b) the collective-
mode parameters, specifically their amplitudes in that
their frequencies are determined self-consistently, and (c)
the noise parameters, specifically the noise strength and
autocorrelation time.

In the investigation to follow, we quantify the vari-
ous parametric dependencies. Section II explains our
methodology in detail. Section III presents an extensive
array of results that together quantify how the beam and
noise parameters conspire to produce large halos. In-
cluded is an interpretation of the underlying dynamics
in terms of the breaking of Kolmogorov-Arnol’d-Moser
(KAM) tori [6] due to the presence of noise. Section IV
concludes by briefly summarizing the findings and, in
view of them, identifying related phenomenology that
will likely be inherent to fully self-consistent large N -
body simulations of real beams.

II. METHODOLOGY

As our foundation, we adopt directly the formalism
of Strasburg and Davidson [7], hereafter called SD. We
consider an intense, direct-current charged-particle beam
propagating in the z direction at constant speed through
a transport channel that imposes a constant, cylindrically
symmetric, linear transverse focusing force. The equi-
librium beam is a warm-fluid Kapchinskij-Vladimirskij
equilibrium, and collective modes are superposed upon
this equilibrium. These modes correspond to stable, ax-
isymmetric flute perturbations and derive from lineariz-
ing the respective Vlasov-Maxwell-Poisson equations [5].
The influence of the beam’s self-fields on particle trajec-
tories is properly included within the framework of the
paraxial approximation.

We incorporate the beam parameters by way of the di-
mensionless self-field perveance K given per the gaussian
system of units as

K =
2ρq2

β2γ3mc2
, (1)

wherein ρ is the line density (number of particles per
unit length), q and m are the particle charge and mass,
respectively, β and γ are the usual relativistic factors,
and c is the speed of light. The perveance then folds into
the space-charge tune depression η as

η ≡
[

1 −
(

βc

ωfRo

)2

K

]1/2

, (2)

in which Ro is the radius of the equilibrium beam and ωf

is the angular frequency associated with the bare external
focusing force. This parameter lies in the range 0≤ η ≤
1, the lower bound corresponding to the space-charge-
limited beam, and the upper bound corresponding to zero
space charge.

SD tabulate the potentials and frequencies correspond-
ing to all of the axisymmetric flute modes. These are col-
lective normal modes, and as such are calculated using
linear perturbation theory [5]. The frequency of the nth

such mode is given by

ωn(η2) = ωf

√

2[1 + η2(2n2 − 1)] . (3)

For their studies of particle dynamics, SD concentrate on
the two lowest-order radial modes, n=1, 2, and we shall
do likewise. We normalize the radial coordinate in terms
of the radius Ro; however, unlike SD, we normalize time
t in terms of the angular frequency ωf , i.e., t→ωf t. In
effect we are setting Ro =1 and ωf =1.

The axisymmetric flute modes are distinctly different
from breathing modes. The most elementary distinction
is that the beam boundary is static (Ro is constant) in
the case of flute modes, but it oscillates in the case of
breathing modes. In both cases the beam is root-mean-
square (rms) mismatched; however, for the flute modes
the beam envelope is matched whereas for the breath-
ing modes the envelope is mismatched. We shall there-
fore use the terms “envelope-matched” and “envelope-
mismatched” to refer to beams with axisymmetric flute
modes and breathing modes, respectively. For the warm-
fluid KV beam, the equilibrium density profile exhibits
a step-function discontinuity at the boundary. In turn,
the flute modes likewise include a discontinuity in the
density profile at the boundary. For example, consider
the KV beam to be excited by the n = 1 flute mode.
The density profile inside the beam is always uniform,
but its magnitude oscillates. To conserve particle num-
ber, this mode includes an oscillating surface charge, i.e.,
the density profile exhibits a Dirac delta function at the
(stationary) envelope radius such that the integral over
the beam volume is independent of time. By contrast
the lowest-order breathing mode entails a self-similar os-
cillation; the envelope radius oscillates, and the number
density likewise oscillates but is everywhere uniform.

A. Equation of Test-Particle Motion

To explore the dynamics of halo formation, we com-
pute orbits of test particles that move in the total poten-
tial formed by the superposition of the external focusing
potential and the space-charge potential. The test par-
ticles contribute nothing to the total potential and do
not interact with each other. This means we treat the
coarse-grained form of the beam’s distribution function,
thereby ignoring, e.g., discreteness effects from the in-
dividual point charges that comprise the beam. Using
the formalism herein, it may be possible to mimic dis-
creteness effects by modeling them as appropriately weak
gaussian white noise [8], i.e., noise that has zero autocor-
relation time, but we refrain from doing so in favor of
concentrating on the influence of colored noise.

The equation of test-particle motion decomposes into
two regimes, one for which the normalized radial coor-
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dinate r < 1, and the other for which r ≥ 1. If only the
n=1, 2 normal modes are excited, then the SD equation
of test-particle motion with our normalization is

r̈ + η2r − L2

r3
− (1 − η2)r{

√

Γ1 cos[ω1(η
2)t]

+
√

Γ2(1 − 3

2
r2) cos[ω2(η

2)t]} = 0 for r<1;

r̈ + r − L2

r3
− 1 − η2

r
= 0 for r≥1; (4)

in which L is the dimensionless angular momentum, Γn is
the ratio of the rms electrostatic energy contained in col-
lective mode n to that contained in the equilibrium beam,
and ωn is given by Eq. (3) after setting ωf =1. The con-
stants L, Γ1, and Γ2 may be regarded as free parameters,
the former in regard to the ‘geometry’ of the test-particle
orbit, and the latter in regard to the ‘amplitudes’ of the
respective collective modes. However, because it derives
from linear perturbation theory, for Eq. (4) to be valid,
both Γ1 and Γ2 must be small compared to unity. Note
that the tune depression η manifests itself not only in the
mode frequency, but also in the frequency characterizing
the effective focusing force acting on the test particle.
Hence, any noise that shows up in the tune depression
influences both of these frequencies.

B. Colored Noise

It is at this point that we depart in an important way
from the SD treatment, for we wish to assess the extent to
which noise, in combination with the collective mode(s),
influences the particle dynamics. This is a problem of
practical importance; noise is unavoidable in real acceler-
ators because they are imperfect. Machine errors, as well
as transitions, will feed space-charge fluctuations in that
the beam evolves self-consistently in response to external
influences. Examples include forces from image charges
due to irregularities in the accelerator hardware as well
as radiofrequency and magnetic field errors, and in the
lab frame the errors may themselves be time-independent
or fluctuating due to, e.g., jitter [9]. From the perspec-
tive of a beam particle, the effect of all of these machine
imperfections is to impart time-dependent noise on the
particle orbit, and thus we seek now to include this noise
in the equation of test-particle motion. Concerning our
upcoming analysis, for zero noise we of course reproduce
the dynamics that SD describe. Thus, any differences
that show up with nonzero noise are attributable solely
to the presence of the noise itself. Our main interest is
to quantify how this noise influences the process of halo
formation, and do so to an extent well beyond what we
did previously.

Following the philosophy and procedure of our earlier
investigation [1], we add gaussian colored noise that sam-
ples an Ornstein-Uhlenbeck process [10]. We do so in
terms of a frequency fluctuation δω(t). Because the tune
depression η incorporates the space charge, we define this

frequency fluctuation in terms of a fluctuating tune de-
pression in a manner consistent with Eq. (3):

η2 → η2 + δη2(t) ;

δη2(t) ≡ ω1δω(t) =
√

2(1 + η2)δω(t) . (5)

The frequency fluctuation δω(t) henceforth represents
the noise. Thus, everywhere it occurs in the equation of
motion, Eq. (4), the quantity η2 is replaced by η2+δη2(t),
with δη2(t) given by the last expression in Eq. (5) above.
Note, for example, that the noise will still manifest itself
in Eq. (4) even if no collective mode is excited.

The first two moments of δω(t) fully determine the
statistical properties of the noise:

〈δω(t)〉 = 0 ;

〈δω(t)δω(t1)〉 = A2 exp(−|t − t1|/tc) ; (6)

in which tc denotes the autocorrelation time, i.e., the
time scale over which the signal changes appreciably. The
special case of white noise corresponds to the limit tc→0.
After generating a colored-noise signal using an algorithm
first presented in Ref. [11], we compute |A| ↔ 〈|δω|〉
which then constitutes the measure of noise strength.
Example manifestations of colored noise for various noise
strengths and autocorrelation times are plotted in Fig. 1
of Ref. [1].

The noise should be viewed from the perspective of
the charged particle as it progresses along its trajectory.
A typical particle will respond to space-charge fluctua-
tions that change over a time scale comparable to, e.g., a
plasma period (which is thus a measure of the minimum
autocorrelation time). It will likewise respond to stochas-
tic changes in the external fields arising as the particle
transits the beam line. Such changes can correspond to,
e.g., the spacing between hardware components. Accord-
ingly a hierarchy of autocorrelation times comprises the
actual noise a particle experiences. In a real beam each
individual particle will have its own distinct initial con-
ditions and thus experience a manifestation of the noise
differing from that seen by each of the other particles.
Hence, at each successive time step during an orbit in-
tegration, a randomly generated frequency fluctuation is
computed in keeping with the specified statistical proper-
ties of the colored noise. Then this frequency fluctuation
is converted to a fluctuation in the space-charge tune de-
pression per Eq. (5), and the so-modified tune depression
is inserted into the equation of motion, Eq. (4), whereby
the fluctuation influences the next time step. How the
noise quantitatively affects halo formation depends on
its strength and its autocorrelation time, dependencies
that we quantify herein.

C. Initial Distribution of Test-Particle Orbits

In keeping with the objective of retaining as much real-
ism as possible, we choose a beam intermediate between
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the space-charge-limited beam (η=0) and the zero-space-
charge beam (η =1). Specifically, we keep η fixed at the
value η=0.3 for our entire investigation.

We choose an initial distribution of test particles that
spans all of the dynamically interesting regions of con-
figuration space and falls gradually to a low-density tail.
Of course there are numerous ways to do this; one is
to choose a distribution corresponding to a configuration
of thermal equilibrium (TE) [12, 13]. We construct a
cylindrically symmetric TE configuration of test charges
following a procedure recently used to devise spherically
symmetric TE configurations [14]. The associated dimen-
sionless Poisson equation is

1

R

d

dR

(

R
dΦ

dR

)

= −e−
1

2
Ω2R2

−Φ(R) = −n(R) , (7)

wherein R is a dimensionless radial coordinate, n(R)
denotes the number density normalized to the central
density, Ω is a dimensionless quantity governing the
strength of the external focusing force vis-à-vis the col-
lective space-charge force, and Φ(R) is the dimensionless
space-charge potential. For the value of Ω we choose
Ω = (1+10−3.5−10−9)/

√
2. Integrating Eq. (7) numer-

ically using this specific value of Ω yields a TE density
profile corresponding to a tune depression η'0.3 [13].

Length and time are normalized differently in Eq. (7)
than in Eq. (4). In keeping with the desire to span all
of the dynamically interesting regions of configuration
space, we simply rescale the density distribution n(R)

calculated from Eq. (7) so that its rms radius R̃ corre-
sponds to the full radius Ro of the warm-fluid KV dis-
tribution: R̃ = Ro = 1. This clearly places a sizeable
population of test particles, that corresponding to much
of the density tail, outside the KV ‘core’. It also mim-
ics, e.g., an inference from the recent beam-halo exper-
iment at the Low-Energy Demonstration Accelerator at
Los Alamos National Laboratory that the input beam
for this experiment carried a sizeable tail in its distribu-
tion [15]. For all of our investigations the initial radii
of the test particles follows this distribution. Most of
our simulations involve N = 106 test particles, a num-
ber sufficient to constitute a good statistical sample. In
principle, the tenuous tail of the density profile extends
to infinity, but in practice there is a finite radius to the
N -body representation of the density because N is finite.

For most of our investigations the initial test-particle
velocities are all set to zero, corresponding to purely ra-
dial orbits, in which case we then replace r(t) by x(t),
and r(t) < 1 or ≥ 1 by |x(t)| < 1 or ≥ 1, respectively, in
Eq. (4). We also, however, consider another ‘limiting’
case, that for which all the orbits are initially circular.
Given a radius rc of the initially circular orbit, the re-
spective dimensionless angular momentum L, a quantity
taken to be conserved, follows from Eq. (4):

L2 =

{

η2r4
c for rc <1,

r4
c − (1 − η2)r2

c for rc≥1.
(8)

As is shown and discussed in Sec. III C 3 below, the in-
fluence of noise on circular orbits that start with rc <1 is
essentially the same as for the purely radial orbits. Con-
sequently, the halo population is similar for both cases.

D. Orbit Integrations

We integrate the equation of motion using a fifth-order
Runge-Kutta algorithm with variable time step [16] tak-
ing the initial time step to be 0.01 ‘differential-equation’
(DE) units. We evolve each orbit for a total time 512
DE units, which corresponds to 40-60 orbital periods de-
pending on the initial conditions for the respective orbit.
Thus, for example, the total integration time is compara-
ble to the transit time of the beam through a large pro-
ton linear accelerator such as that associated with the
Spallation Neutron Source [17]. In the absence of time-
dependence and noise, i.e., with Γ1 = Γ2 = 〈|δω|〉 = 0,
the algorithm conserves energy within a fractional error
10−9 at each time step and within 10−7 over the whole
integration.

Our investigation spans a broad sector of the param-
eter space in that the space-charge tune depression, set
at η=0.3, is the only parameter that is never varied. We
treat all combinations of the following parametric val-
ues: mode amplitudes Γ1,2 = 0.05, 0.10, and 0.20; noise
strengths 〈|δω|〉=0, 0.001, 0.01, and 0.1; autocorrelation
times tc = 0.5, 1, 2, 10, 80, and 160; and test-particle
sample sizes N =102, 103, 104, 105, and 106. Most of the
plots shown herein pertain to the specific choice tc =80;
however, excursions to lower and higher values are in-
cluded to provide a check on the sensitivity of halo for-
mation to the autocorrelation time of the noise. In a real
machine, of course, the noise will incorporate a range, or
‘superposition’, of autocorrelation times and strengths.
In addition, with one exception (Fig. 8), all of the plots
we show pertain to radial orbits, i.e., cases for which all
of the test particles have L=0 in Eq. (4).

III. INFLUENCE OF COLORED NOISE ON

HALO FORMATION

SD explored the dynamics of test-particle motion in the
absence of noise. The form of their equation of motion
differed slightly from our Eq. (4) in that they normalized
the time in terms of the space-charge-depressed focusing
frequency rather than the external focusing frequency.
Notwithstanding the different normalization, the physi-
cal content remains unchanged. SD discovered that the
time-dependent potential associated with the presence of
a collective axisymmetric flute mode, even if only weakly
excited, establishes a chaotic region of phase space in the
outer regions of the beam. They also found that this
feature is not present in the phase space of an envelope-
mismatched beam having a similar level of rms mismatch
but no collective mode (cf. Fig. 9 of Ref. [7]). An impor-
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tant consequence of the chaotic sea is that orbits enter-
ing it can stochastically explore a larger region of phase
space, thereby gaining more energy and correspondingly
larger orbital amplitude. SD consequently demonstrated
that the excitation of collective modes leads to a halo
significantly larger than that generated by an envelope
mismatch, and that the difference is due to destabiliza-
tion of KAM surfaces by the collective mode. As we will
now show, the presence of colored noise substantially en-
hances the influence of the collective modes.

A. Orbital Dynamics

Halo formation is inextricably linked to the dynam-
ics of individual orbits. Consequently, a close inspection
of what happens to an individual orbit because of the
noise will be instructive. We arbitrarily select an orbit
that originates deep in the interior of the beam; the ini-
tial conditions are x = −0.733407 and ẋ = 0. We then
integrate the orbit for 2048 DE units to obtain good fre-
quency resolution in its power (Fourier) spectrum. The
trajectory and power spectrum of this orbit are plotted
in Fig. 1 with Γ1 = 0.1, Γ2 = 0, and tc = 80, and for a
sequence of successively increasing noise strengths. With
zero noise the power spectrum is sharply peaked at a sin-
gle frequency indicating that the orbit is periodic, hence
regular, and the trajectory x(t) clearly reflects this pe-
riodicity. However, in the presence of even weak noise
the orbit clearly becomes chaotic, having a power spec-
trum that features continua. A useful measure of chaos
is the number of frequencies Kf that together contain a
given fraction f of the spectral power. This measure is
called the ‘complexity’ of the orbit; a common choice is
f = 0.9 [14]. Accordingly, a broader spectrum indicates
a higher degree of chaos. Concerning the orbit in Fig. 1,
the noise has obviously placed it in a chaotic region of
the phase space established as a consequence of the time-
dependent potential associated with the collective mode.
How this happens is clarified in Sec. III E below.

As is also apparent from Fig. 1, the degree of orbital
chaoticity as quantified via the complexity K0.9 is not
necessarily a simple, i.e., monotonic, function of the noise
strength. To reiterate, the power spectrum, hence the
complexity, derives from the history of the orbit and
thereby reflects a superposition of successive short-time
behaviors. An orbit that spends a relatively large fraction
of time at large amplitudes, over which the net force is
predominantly that of the harmonic external potential,
will tend to be ‘more regular’ and have smaller K0.9.
As concerns a single, specific orbit (so no phase-space
statistics are involved), what matters is not so much the
amplitude of the noise, but rather whether a sequence
of noise-induced kicks happens to make the orbit more
chaotic, and these kicks are, of course, unpredictable a

priori. Our experiments indicate that a sequence of kicks
leading to increased orbital chaoticity and/or increased
orbital amplitude will occur sooner for some orbits and

later for others. In simulations involving many test parti-
cles distributed over a range of initial conditions, features
of the evolving test-particle distribution are thus mani-
festly statistical.

B. Evolution of the Halo Amplitude

We now evolve initial distributions of N = 106 test
particles constructed per the prescription of Sec. II C. As
the orbit integrations progress, we record a ‘snapshot’ of
the test-particle positions once every eight DE time units.
This interval approximately corresponds to the period of
a typical orbit in the unperturbed SD potential, which we
call the ‘dynamical time’ tD: 8 DE units '1 tD. For every
snapshot we record the largest radius reached by any of
the N particles; the collection of these radii represents
the evolving halo amplitude RH(t).

Example results are plotted versus time in Fig. 2, for
which the mode amplitudes and autocorrelation time are
fixed at Γ1 = 0.05 or 0.1, Γ2 = 0, and tc = 80, and the
noise strength 〈|δω|〉 is varied from zero upward. As the
figure indicates, in the absence of noise the halo ampli-
tude is quasiperiodic, and its time-averaged value stays
the same, i.e., it does not grow. This is as expected [3, 7].
A particle ‘resonantly’ coupled to the collective mode is
kicked to larger amplitudes. However, because its or-
bital frequency changes as its amplitude changes, at suf-
ficiently large amplitude the particle decouples from the
mode and its amplitude ceases to grow. Differences be-
tween the external focusing force and the collective space-
charge force thus impose a hard upper bound on the halo
amplitude. The presence of noise, however, drastically
changes this scenario. Occasionally successive kicks from
the noise will happen to be ‘just right’ to keep a particle
in phase with the mode for an effectively longer time and
thereby push it beyond the upper bound (i.e., outer KAM
torus) characterizing the noise-free case. The halo am-
plitude RH(t) continues to grow, and the growth appears
to be almost linear with time (at least after the first few
oscillations). Over the range of noise strengths 〈|δω|〉 we
explore, both stronger noise and larger mode amplitudes
enhance halo growth. Moreover, when the noise is strong
(e.g., 〈|δω|〉=0.1, i.e., roughly 10% of the collective-mode
frequency), pronounced halo growth occurs in just a few
(∼ 5) dynamical times.

Consider the largest orbital amplitude reached by any
particle over the course of a simulation, i.e., the largest
halo amplitude, and denote this amplitude as max(RH ).
This quantity will of course vary with the number of test
particles N in the simulation. Because the number of
particles that can be incorporated into N -body simu-
lations is inherently limited by available computational
power, it is of interest to know how sensitive the halo
amplitude can be to the choice of N . To quantify this
sensitivity we adjust the test-particle population between
102 ≤N ≤ 106 particles. Then we perform a number of
experiments with different noise strengths and different
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values of Γ1 (with Γ2 =0 and tc =80). Results pertaining
to Γ1 =0.05 and 0.1 appear in Fig. 3. Because there is a
hard upper bound to the halo amplitude in the absence
of noise, max(RH) is essentially independent of N for the
case 〈|δω|〉=0 provided N is sensibly large. This is not
true when noise is present; the noise establishes a quasi-
logarithmic dependence of max(RH) on N , a finding that
is in keeping with our earlier results [1]. Larger values
of Γ1 yield larger values of max(RH), but the scaling of
max(RH ) with N remains roughly the same.

Results presented thus far correspond to a single au-
tocorrelation time tc = 80 ' 10 tD. What happens if tc
is much shorter or much longer? Plots of maximum halo
amplitude max(RH ) versus tc for a sequence of increasing
noise strengths 〈|δω|〉, and with only the n=1 collective
mode active, appear in Fig. 4. Data points in these plots
each correspond to a sample of N = 104 test particles;
simulations with N =106 are found to give similar results
but, of course, they involve much longer run times. In
most cases the halo extent is seen to be only weakly de-
pendent on autocorrelation time. The exception pertains
to large noise strength: 〈|δω|〉= 0.1, i.e., a 10% fluctua-
tion in the collective-mode frequency, generates substan-
tially larger halo for tc <100. The presence of such large
noise would seem to be anomalous in a real accelerator,
and one might thus presume the halo amplitude will nor-
mally be independent of hardware details associated with
the establishment of noise correlations. However, under
circumstances that lead to a turbulent beam as might
reside, for example, at and just downstream of the beam
source and at large hardware transitions, one might in-
deed expect the particle orbits to experience large noise
from space charge locked in the turbulent eddies. Such
circumstances would seem normally to be transient, with
the large-scale turbulence mixing away in a few dynam-
ical times. Nevertheless, because it would form rapidly,
a sizeable halo would likely arise as evidenced from the
〈|δω|〉=0.1 curves in Fig. 2.

C. Evolution of the Test-Particle Distribution

1. Halo Density

Not just the amplitude of the halo is of interest, but
also its density profile. A convenient and meaningful rep-
resentation of the test-particle distribution is obtained
by calculating the percentage of particles lying outside
a radius R; let us call this P (r > R) while noting
P (r>R)→100% as R→0. Plots of log10[P (r>R)] ver-
sus R computed at t=512 appear in Fig. 5. Here again,
the mode amplitudes and autocorrelation time are fixed
at Γ1 = 0.05 or 0.1, Γ2 = 0, and tc = 80, and the noise
strength 〈|δω|〉 is varied over a considerable range. As a
general trend the distribution spreads to larger radii, i.e.,
the halo amplitude grows, as the noise strength increases.

One might anticipate that the n=2 mode would cou-
ple to a statistically small set of particles in a manner

that measurably increases the halo extent beyond that
corresponding to the n = 1 mode acting alone. As seen
from Fig. 6, adding the n=2 mode does modify the dis-
tribution, though its effect appears to be modest.

2. Mixing and Halo Formation

To visualize how orbits mix, we integrate collections of
1600 test-particle initial conditions clumped into tightly
localized regions of phase space. The integrations are
done both without and with noise; the evolution of these
collections is depicted in Fig. 7. Rows (a)-(c) pertain
to the absence of any collective mode, i.e., Γ1 = Γ2 = 0.
In the absence of noise [row (a)] all mixing is due to a
frequency spread across the initial clumps arising from
the nonlinear net force. Separation of the initially local-
ized particle trajectories then proceeds as a power law
in time; this is regular phase mixing, i.e., linear Landau
damping. Noise [rows (b) and (c)] influences the effec-
tive focusing force acting on the test particles, but this
influence generates no significant spreading to large or-
bital amplitudes. Turning on the n = 1 collective mode
changes the situation completely. With Γ1 = 0.05, but
in the absence of noise [row (d)], the clumps still spread
only to a restricted region of phase space; however, the
same is clearly not true when noise is included [rows (e)
and (f)]. Noise causes a far more efficient mixing. Even
moderately weak noise, e.g., 〈|δω|〉=0.01, thoroughly and
exponentially mixes particles, regardless of their starting
points, into all regions of the phase space accessed by the
beam. Their exponential separation into global regions
of phase space is the principal signature of chaotic mix-
ing [14]. Increasing Γ1 further accentuates this chaotic
mixing and causes the orbits to fill an even larger phase-
space area.

3. Circular vs. Radial Orbits

Thus far all simulations have pertained to radial test-
particle orbits. Might the results be substantially differ-
ent for orbits with nonzero angular momentum? To an-
swer this question, we now consider the other extreme,
that for which all test particles are on circular trajecto-
ries at t=0; the corresponding values of angular momen-
tum L are assigned according to Eq. (8). We then solve
Eq. (4) without and with noise in the space-charge tune
depression. This, however, means that we refrain from
adding noise to the azimuthal motion. To do otherwise
would vitiate using angular momentum as an integral of
the motion and thereby lengthen the computations, all
for the ‘benefit’ of incorporating no fundamentally new
or important additional phenomenology.

In Fig. 8 results for the halo amplitude RH(t) [panel
(a)] and halo distribution P (r > R) [panel (b)] are jux-
taposed against those pertaining to purely radial orbits.
Although the curves are not identical, neither are they
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systematically different. We attribute the differences to
statistical fluctuations caused by the random noise in-
cluded in the simulations. This finding is interesting in
that particles on circular orbits with rc(0)≥1 essentially
lie outside the influence of the time-dependent poten-
tial arising from the collective modes, whereas particles
on radial orbits do not. That halo profiles correspond-
ing to radial versus azimuthal orbits are similar therefore
suggests that particles initially in the ‘core’, for which
r(0)< 1, are the ones that dominate the process of halo
formation independent of their initial conditions in ve-
locity space. By reproducing RH(t) with the initial radii
truncated at r(0) = rc(0) = 1, we verified that this sug-
gestion is indeed true.

D. Collective Modes vs. Envelope Mismatch

The preceding results have illustrated how collective
modes, orbital chaoticity, and noise in an envelope-
matched beam collaborate to drive an ever-growing
halo. Consider, by contrast, a beam that is envelope-
mismatched, i.e., one that exhibits the lowest-order
breathing mode [18, 19]. The corresponding equation of
test-particle motion is similar to that governing a beam
with a single excited collective mode, except now the
‘core radius’ R = R(t), i.e., the radius defining the ‘in-
side’ of the beam, is a function of time. Specifically, the
dimensionless equation governing the core radius is

R̈ + R − η2

R3
− 1 − η2

R
= 0 , (9)

which then folds into the dimensionless single-particle
equation of motion

r̈ + r − 1 − η2

R2
r = 0 for r<R(t) ,

r̈ + r − 1 − η2

r
= 0 for r≥R(t) . (10)

We define the envelope-mismatch parameter M ≡
R(t = 0)/Ro, with Ro = 1 denoting the radius of
the matched beam. Results presented for envelope-
mismatched beams derive from integrating orbits in the
coupled Eqs. (9) and (10).

To obtain a rough correspondence between the ampli-
tude Γ1 of the n = 1 collective mode in the envelope-
matched beam and the envelope-mismatch parameter
M , we imagine M to be small. We then set R →
1+(M −1) cos[ω1(η

2)t], and in turn put R−2(t) → 1−
2(M−1) cos[ω1(η

2)t] in Eq. (10). By comparing the end
result with Eq. (4) (with L set to zero) and otherwise
neglecting the different definitions of core radii, we then
infer Γ1↔4(M−1)2.

Now, taking the core radius to be r=R(t) as pertains
to an envelope mismatch rather than r = 1 as pertains
to collective modes in an envelope-matched beam has a
profound effect on the mixing, hence the halo dynamics.

Figure 7 [row (g)] illustrates the mixing in an envelope-
mismatched beam. Here the mismatch is M = 1.1118,
for which the counterpart collective-mode amplitude is
Γ1 = 0.05. Accordingly, the parameters of Fig. 7(g) are
analogous to those of Fig. 7(f). What is striking is how
comparatively constrained the phase mixing and halo
growth turn out to be in the envelope-mismatched beam.
The underlying dynamics are clearly different. How so?

The answer lies in the Poincaré surfaces of section
(PSS); as SD point out [7], these are distinctly different
for the two cases. The PSS for the envelope-mismatched
beam exhibits robust, densely packed KAM tori in the
region of phase space exterior to the beam. This is true
even if the mismatch is large. These tori inhibit the par-
ticles from gaining significant energy and reaching large
amplitudes. The n = 1 collective mode in the envelope-
matched beam, by contrast, weakens the tori in the vicin-
ity of the beam edge r=1. As a consequence, particles are
then freer to move; they can stochastically and rapidly
explore a large region of phase space. SD point out that
the orbital amplitudes of those particles can rapidly in-
crease as the amplitude of the collective mode is raised,
whereas for the envelope-mismatched beam, test particles
gain negligible energy as the mismatch is raised. SD’s
findings pertain to zero noise; we find nonzero noise sub-
stantially magnifies them by further weakening and/or
breaking the tori. When the KAM tori are broken, a se-
ries of small, successive kicks can much more easily push
a particle to ever increasing radii. Moreover, the asso-
ciated time scale is short; significant extended halo can
form in just a few dynamical times, i.e., orbital periods.

E. Noise-Induced Breakdown of Tori

To visualize noise-induced disintegration of tori with
consequent halo formation, we plot the Poincaré sections
of 18 test-particle orbits having initial conditions that
collectively represent the whole of configuration space.
We take only the n = 1 mode to be excited, with am-
plitude Γ1 =0.05, and integrate the 18 trajectories for a
total time t=2048 (about 250 tD). We do a series of these
experiments, starting with a noise strength 〈|δω|〉=10−6

and successively increasing it to 10−5, 10−4, 5 × 10−4,
and 10−3; for every experiment we set tc =80. We record
the positions and velocities of the particles at every pe-
riod T =2π/ω1. For each experiment the respective PSS
is shown in Fig. 9; different colors denote different orbits.

The Poincaré sections clarify the underlying micro-
scopic dynamics. As the noise strength is raised, ‘inter-
nal’ (lower-energy) tori are clearly the first, and thus the
easiest, to break. With stronger noise the outermost tori
break as well. Note that the strongest noise considered
is only a 0.1% fluctuation of the mode frequency, and yet
this noise breaks all of the tori [panel (f)]. It is important
to remember that these plots lack statistical significance
since only 18 orbits are represented. In a statistically im-
portant, i.e., much larger, sample some number of parti-
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cles may conceivably break through the outer tori even
with very small noise. What the plots suggest is that this
number should increase as the noise strength increases,
in keeping with what one would expect intuitively. The
‘disintegration time scale’ (delineating the onset of halo
formation) is as indicated in the plots of RH discussed
earlier, and these plots were developed with meaningful
statistics, i.e., with 106 test particles.

We now repeat the same investigation for the cor-
responding envelope-mismatched beam, i.e., M = 1 +

Γ
1/2
1 /2=1.1118. Here, we record the positions and veloc-

ities of the particles at every period at which the core has
its minimum radius; the results appear in Fig. 10. Panel
(a) depicts the PSS with zero noise, whereas panel (b)
depicts the PSS with noise having the same parameters
(〈|δω|〉=10−3 and tc =80) as in Fig. 9(f). Although with
this noise the KAM tori become slightly fuzzier, they
are not yet broken, and this stands in stark contrast to
the situation wherein a collective mode of similar am-
plitude is active in an envelope-matched beam. Even
when the noise has very large amplitude [〈|δω|〉 = 10−1

in Fig. 10(c)], the beam boundary in phase space ap-
pears still to be sharply defined, although the tori have
now obviously broken to a certain degree, particularly
in the beam’s interior. Hence, although the tori of the
envelope-mismatched beam are seen to be robust, they
are not indestructible; sufficiently strong noise will even-
tually break them.

IV. DISCUSSION AND CONCLUSIONS

The foregoing results illustrate that collective modes
can have a critical impact on halo formation by destabi-
lizing the phase space near the beam boundary. Particles
then are freer to roam by interacting with the collective
modes, extracting energy from them, and thereby pop-
ulating a halo. By keeping a statistically small number
of particles in phase with collective modes, colored noise
contributes toward not only populating the halo, but also
expanding its extent, and it does so rapidly.

One might reasonably question, because they are un-
realistic, whether density discontinuities inherent to col-
lective modes in the warm-fluid KV beam might vitiate
our findings by imposing correspondingly unrealistic dy-
namics. The answer would seem to be no because we
showed in earlier work (Ref. [1]) that adding noise to
a perturbed thermal-equilibrium beam, a beam that is
devoid of discontinuities and wherein the perturbation
mimics the presence of a global collective mode, yields or-
bital amplitudes entirely consistent with those computed
herein.

These matters are of practical importance to the evolu-
tion of real beams. Transitions in an accelerator will give
rise to various mismatches that move the beam away from
equilibrium. Subsequent charge redistribution will trig-
ger a hierarchy of collective modes. Unavoidable irregu-
larities in the beamline will impose a spectrum of colored

noise that adds self-consistently to the time-dependent
potential associated with the collective modes. Conse-
quently, the phenomenology that we uncovered will arise,
as will the consequential growth of the beam’s phase
space in general, and beam halo in particular. Account-
ing for these details therefore becomes imperative, par-
ticularly in regard to designing accelerators for the pro-
duction of high-average-current beams.

Although by working with the warm-fluid model of
a beam we have endeavored toward a treatment that
is realistic, yet still generic, our treatment neverthe-
less retains some shortcomings that need to be recti-
fied in future work. These include the following: (1)
The distribution of collective modes will evolve in a real
beam [20]; modes will tend to dissipate in conjunction
with the redistribution of the free energy they contain,
a dynamic that we have neglected. However, the time
scales over which large-scale collective modes dissipate
are not yet well quantified, and evidence from numer-
ical simulations suggest they may persist for hundreds
of dynamical times [21]. To the extent this proves true,
our analysis reveals the attendant impact on halo forma-
tion. (2) A real beam contains no test particles; all of
the particles interact with one another. (3) A real ac-
celerator will present a spectrum of colored noise, i.e., a
distribution of noise parameters, in keeping with the ac-
tual hardware and field irregularities. The totality of this
phenomenology can be incorporated only by way of care-
ful self-consistent N -body simulations that reflect both
accurate boundary conditions and statistically accurate
initial conditions, as well as faithfully reproduce the hi-
erarchies of spatial and temporal scales intrinsic to the
evolving beam.

We have endeavored to show clearly and convinc-
ingly that details can be important to the evolution of
a charged-particle beam under the influence of space
charge, in that they can make a substantial impact on
the macroscopic evolution of its phase-space distribution.
Accordingly, these details merit careful study. A seem-
ingly probable outcome would be that the proper way
to picture generically a nonequilibrium beam subject to
self-forces is in terms of an increasingly well-mixed and
continually growing phase space as opposed to a phase
space in which tori largely partition, and hence constrain,
the motion of the constituent particles. This is espe-
cially true considering that the results herein pertain to
1.5-dimensional beams (the half dimension correspond-
ing to time), whereas real beams are higher-dimensional
systems, and thus their phase spaces are inherently less
hospitable to barriers in the form of tori and cantori.

In a paper that appeared subsequent to the submis-
sion of our manuscript, Gerigk shows that modest statis-
tical errors in the focusing gradient generate continually
growing halo [22]. His initial study centers on a cylin-
drical beam that, in the absence of these errors, is in
equilibrium, e.g., it is both rms-matched and envelope-
matched. He finds that the focusing errors excite oscilla-
tions in this matched beam that then transfer energy to
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single particles. He also demonstrates that the same phe-
nomenology applies in a more realistic three-dimensional,
i.e., bunched, beam. Inasmuch as Gerigk was unaware of
our earlier paper (Ref. [1]) [23], and we were likewise
unaware of his related activity, through complementary
investigations we have all independently arrived at the
same conclusion: noise constitutes a continual source of
enhanced halo production.
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FIG. 1: Plots of an example orbit having initial conditions
x(0) = −0.733407, ẋ = 0, in the presence of various noise
strengths with Γ1 = 0.1, Γ2 = 0, tc =80. The orbit is plotted
in configuration space x vs. t (left panel) and in phase space ẋ

vs. x (center panel), along with its corresponding power spec-
trum (right panel) wherein the complexity K0.9 is provided
as a measure of orbital chaoticity (see Sec. IIIA). The four
rows correspond to different noise strengths: (a) 〈|δω|〉 = 0,
(b) 〈|δω|〉=0.001, (c) 〈|δω|〉=0.01, and (d) 〈|δω|〉=0.1.
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FIG. 2: Halo amplitude RH vs. t with Γ2 = 0, tc = 80, and
(a) Γ1 = 0.05, (b) Γ1 = 0.1. The number of test particles is
N = 106. The four curves correspond to four different noise
amplitudes. Blue curve with crosses: 〈|δω|〉 = 0. Red curve
with asterisks: 〈|δω|〉 = 0.001. Black curve with diamonds:
〈|δω|〉=0.01. Green curve with triangles: 〈|δω|〉=0.1.



12

FIG. 3: Maximum halo amplitude max(RH) reached over
a duration t = 512 DE units vs. the logarithm of the test-
particle population N with Γ2 = 0 and tc = 80, and with (a)
Γ1 =0.05, and (b) Γ1 =0.1. The four curves correspond to four
different noise amplitudes. Blue curve with crosses: 〈|δω|〉=
0. Red curve with asterisks: 〈|δω|〉 = 0.001. Black curve
with diamonds: 〈|δω|〉 = 0.01. Green curve with triangles:
〈|δω|〉=0.1.
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FIG. 4: Maximum halo amplitude max(RH) vs. the logarithm
of the autocorrelation time tc computed for N =104 test par-
ticles with Γ1 = 0.05 and Γ2 = 0. Blue curve with crosses:
〈|δω|〉=0.002. Red curve with asterisks: 〈|δω|〉=0.01. Black
curve with diamonds: 〈|δω|〉= 0.03. Green curve with trian-
gles: 〈|δω|〉=0.1.
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FIG. 5: Percentage P (r>R) vs. R of test particles (N =106)
lying outside radius R at the end of the simulation (t=512) for
various noise strengths with (a) Γ1 = 0.05, and (b) Γ1 = 0.1.
Fixed parameters are tc = 80 and Γ2 = 0. Blue curve with
crosses: 〈|δω|〉= 0. Red curve with asterisks: 〈|δω|〉= 0.001.
Black curve with diamonds: 〈|δω|〉=0.01. Green curve with
triangles: 〈|δω|〉=0.1.
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FIG. 6: Plots of P (r > R) vs. R in the presence of both
the n = 1 and n = 2 modes (N = 106) at the end of the
simulation (t = 512) for fixed tc = 80, various values of mode
amplitudes Γ1,2, with noise strength (a) 〈|δω|〉 = 0.001, and
(b) 〈|δω|〉=0.01. Blue curve with crosses: Γ1 =0.05, Γ2 =0.1.
Red curve with asterisks: Γ1 = 0.1, Γ2 = 0.05. Black curve
with diamonds: Γ1 =0.05, Γ2 =0. Green curve with triangles:
Γ1 =0.1, Γ2 =0.
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FIG. 7: Evolution of four collections of 1600 test-particle or-
bits integrated over t = 512 DE units (∼60 tD). The collec-
tions start (with zero initial particle velocity) at x = 0.31 ±
0.002, x=0.70 ± 0.002, x=1.1 ± 0.002, and x=1.41 ± 0.002
with tc = 80, Γ2 = 0, and: (a) Γ1 = 0, 〈|δω|〉= 0, (b) Γ1 = 0,
〈|δω|〉 = 0.001, (c) Γ1 = 0, 〈|δω|〉 = 0.01, (d) Γ1 = 0.05,
〈|δω|〉 = 0, (e) Γ1 = 0.05, 〈|δω|〉 = 0.001, and (f) Γ1 = 0.05,
〈|δω|〉 = 0.01. (g) Phase mixing in an envelope-mismatched
beam; the mismatch M =1.1118 compares to a mode ampli-
tude Γ1 =0.05, and 〈|δω|〉=0.01.



17

FIG. 8: Halo distributions (N =106) for radial orbits (dotted
curves) and initially circular orbits (solid curves). (a) Halo
amplitude RH(t) vs. t with Γ1 =0.05, Γ2 =0, and tc =80. (b)
Percentage P (r > R) of test particles lying outside radius R

at the end of the simulation (t=512). Blue curves: 〈|δω|〉=0.
Red curves: 〈|δω|〉=0.001. Black curves: 〈|δω|〉=0.01. Green
curves: 〈|δω|〉=0.1.
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FIG. 9: Poincaré sections for a set of 18 representative initial
conditions integrated over t=2048 DE units (∼250 tD) with
various noise strengths, and with tc = 80, Γ1 = 0.05, and
Γ2 =0: (a) 〈|δω|〉=0, (b) 〈|δω|〉=10−6, (c) 〈|δω|〉=10−5, (d)
〈|δω|〉=10−4, (e) 〈|δω|〉=5 × 10−4, and (f) 〈|δω|〉=10−3.
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FIG. 10: Poincaré sections for a set of 18 representative initial
conditions in an envelope-mismatched beam integrated over
t = 2048 DE units (∼250 tD) with various noise strengths,
and with M = 1.1118: (a) 〈|δω|〉 = 0, (b) 〈|δω|〉 = 10−3, and
(c) 〈|δω|〉=10−1.


